Consultoría

Charlatanes y regulación

Así resumen sus autores Regulation of Charlatans in High-Skill Professions:

We study a market for a skill that is in short supply and high demand, where the presence of charlatans (professionals who sell a service that they do not deliver on) is an equilibrium outcome. We use this model to evaluate the standards and disclosure requirements that exist in these markets. We show that reducing the number of charlatans through regulation decreases consumer surplus. Although both standards and disclosure drive charlatans out of the market, consumers are worse off because of the resulting reduction in competition amongst producers. Producers, on the other hand, strictly benefit from the regulation, implying that the regulation we observe in these markets likely derives from producer interests. Using these insights, we study the factors that drive the cross-sectional variation in charlatans across professions. Professions with weak trade groups, skills in larger supply, shorter training periods and less informative signals regarding the professional’s skill, are more likely to feature charlatans.

¿Es Madrid ciudad para startups (relacionadas con los datos)?

[Esta entrada, simplemente, plantea una hipótesis altamente especulativa; expone una serie de argumentos su pro pero deja la pregunta abierta y la respuesta al buen criterio del lector.]

El año pasado di un curso de estadística bayesiana (¿a alguien le interesaría que lo impartiese en su empresa o institución?) en la UPC, en Barcelona. En un descanso hablé brevemente con una alumna que estaba buscando trabajo en el mundo de la ciencia de datos. Le pregunté si no le interesaría mudarse a Madrid (quienes vivimos en Madrid sabemos que no hay vida inteligente fuera de nuestra provincia, ¿verdad?) y me contestó que en Madrid no había nada, que no había empresas, que no había movimiento; que en BCN había muchas, pero que en la villa no le constaba. Me sorprendió (y lo admito, me ofendió un poquito) y respondí lo obvio: que si BBVA, que si Santander, que si Telefónica, que si Amadeus, que si… ¡tenemos decenas de factorías/churrerías de ciencia de datos por toda la periferia de la M-30!

Extingámonos con dignidad: generaciones actuales y futuras, no incurramos en los errores de las anteriores

Participé el otro día en una cena con gente friqui. Constaté con cierto desasosiego cómo han virado los sujetos pasivos de nuestra indignación profesional a lo largo de los años.

Antaño, fueron los viejos que seguían apegados a la paleoinformática. Hogaño, los primíparos que usan Python y desdeñan R.

Tengo sentimientos encontrados y no sé qué más añadir.

Una anécdota sobre el mercado eléctrico y sus mermas

Hace años, algunos ya, di un curso de R en una empresa de consultoría bastante grande. La impartí dentro de un grupo que desarrollaba soluciones para el mercado eléctrico. Hablando con ellos, a la hora del café, me contaron uno de los proyectos en los que trabajaban: un sistema de optimización de la distribución eléctrica que podía ahorrar millones (no recuerdo bien la cifra, pero era impresionante) a las compañías eléctricas en concepto de energía que se disipaba y perdía sin beneficiar a nadie. Sin embargo, el proyecto no tenía comprador por un muy particular motivo: la legislación del mercado eléctrico obliga a los usuarios finales a compensar a las empresas por esas pérdidas. De modo que si se reducía la pérdida, se reducía igualmente la facturación de las compañías.

Replicabilidad (y su falta de ella, fuera de la academia)

Se habla mucho de replicabilidad (y la falta de ella) como indicio de una crisis en ese complejo de intereses económicos, de poder y, en ocasiones, fornicatorios en que ha devenido la ciencia. Pero qué más nos da que se publique un artículo más o un artículo menos o que una ocurrencia irrelevante, gracias a un sinfín de artefactos propios de la industria de la salchicha, sea cohonestada con un p-valor menor o mayor que 0.05. Qué más da.

El motivo: retorno esperado negativo

Hay gente a la que recomiendo Kaggle y similares. Otra a la que no.

Con estos últimos suelo razonar alrededor de las ideas contenidas en Why I decided not to enter the $100,000 global warming time-series challenge (versión corta: retorno esperado negativo).

Y no me refiero tanto al monetario explícito del que habla el artículo, por supuesto, sino al otro: el que involucra el coste de oportunidad.

Posterioris informativas (o más bien, cuando te informan de cuál es la posteriori)

El otro día, en la ronda de preguntas tras mi charla en la Universidad de Zaragoza, después de mi enconada defensa de las prioris informativas, alguien apostilló muy agudamente: si tenemos prioris muy informativas, ¿para qué queremos datos?

Eso, ¿para qué queremos datos?

El otro día me lo explicó otro amigo en las siguientes líneas que reproduzco con las inexactitudes achacables a memoria anaidética:

En una empresa, un consejero tiene un proyecto, una idea. La tiene que defender frente al CEO y el resto del consejo. Ahí entra la ciencia de datos: alguien presenta un documento con tablas y gráficos que le dan un sostén basado en datos [a aquellas ideas que son previas a los datos].

Estimar la demanda es como ponerle el cascabel al gato

Alborozábanse los ratones al oír de sus líderes la solución definitiva al problema de aquel gato que los diezmaba inmisericordemente: ¡colóquesele un cascabel!

El problema gordiano del pricing, el cascabel que hay que ponerle a ese gato, es el de la estimación de la curva de demanda. Ahi radica el quid.

Unos lo resuelven con simulaciones que quedan estupendas sobre el papel. ¡Qué fácil es ponerle un cascabel a un gato de madera!

¿Soy parte del concilábulo heteropatriarcal?

En una de esas comidas navideñas tuve que asistir pasivamente a una conversación en la que se dibujaba una peculiar realidad alternativa: existiría algo así como un conciliábulo (el Márketing) con capacidad de memoria, entendimiento y voluntad propias e interés por implementar una particular agenda de corte heteropatriarcal. Producto de la cual, por ejemplo, las afeitadoras de color rosa para mujeres vendrían a resultar más caras que las azules para hombres, etc. El Márketing sería un grupito de señores fumando puros, jugando al mus que, entre partida y partida, deciden el color, empaquetado, estampado, forma y precio de cada producto imaginable vendido en cualquier tienda del reino; el descuento que se puede aplicar a cada cual según su raza, sexo/orientación sexual, religión, enfermedad crónica y afiliación sindical. Con un solo objetivo: perjudicar a los/as consabidos/as.