probabilidad

¿Es Bunge un fraude?

Mi primer contacto con la obra de Mario Bunge fue en mi época de estudiante en Zaragoza. Por algún motivo —probablemente, porque en aquella época repasar los lomos de los libros en las bibliotecas y librerias era el equivalente al perder el tiempo en internet de hogaño— cayó en mis manos un libro suyo. Solo recuerdo que leerlo requirió más empeño que aprovechamiento trujo a aquel chaval de provincias. El segundo —hará un par de años— fue una grabación de una conferencia que dio en Buenos Aires.

Monty Hall, reformulado

Considérese el siguiente juego: Hay tres sobres indistinguibles sobre una mesa. Uno de ellos contiene un premio. Puedes elegir o bien uno de ellos o bien dos de ellos al azar. Convénzase uno de que es mejor elegir dos sobres que uno: tienes una probabilidad de ganar el premio de 2/3 contra la de 1/3 si eliges solo uno. Convénzase uno de que el problema de Monty Hall en su formulación habitual es solo una reformulación artificiosa y engañosa del juego anterior.

Dos cuestiones sobre la naturaleza de la probabilidad planteadas por Keynes en 1921 pero que siguen hoy igual de vigentes

I. A Treatise on Probability, la obra de Keynes (sí, el famoso) de 1921, es un libro muy extraño que se puede leer de muchas maneras. Puede servir, si se hace poco caritativamente, para denunciar el lastimoso estado en el que se encontraba la probabilidad antes de la axiomatización de Kolmogorov, 12 años depués de su publicación. O también, si se hace más cuidadosamente, para rescatar una serie de consideraciones que aun hoy muchos hacen mal en ignorar.

Aún más sobre propagación de errores (y rv)

[Menos mal que se me ha ocurrido buscar en mi propio blog sobre el asunto y descubrir —no lo recordaba— que ya había tratado el asunto previamente en entradas como esta, esta o esta.] El problema de la propagación de errores lo cuentan muy bien Iñaki Úcar y sus coautores aquí. Por resumirlo: tienes una cantidad, $latex X$ conocida solo aproximadamente —en concreto, con cierto error— e interesa conocer y acotar el error de una expresión $latex f(X)$.

Nuevo vídeo en YouTube: "¿Se pueden estimar probabilidades pequeñas con pocas observaciones?"

Acabo de subir un nuevo vídeo a Youtube, en el que discuto dos problemas: uno, general, que es el que indica su título; y otro más concreto que es su motivación última: si es posible asegurar que la combinación de vacunas es segura a través de un estudio realizado con 600 sujetos, tal como el realizado por el ISCIII recientemente. En él se hace referencia a una vieja entrada en el blog del autor, esta.

Sobre las probabilidades de eventos que ocurren una única vez

La probabilidad se predica de eventos de muy distintas características. Existe un arco entero de casos en cuyos extremos opuestos podemos encontrar los eventos: Obtener cara al lanzar esta moneda. Que X gane las elecciones que ocurrirán en un mes. La principal diferencia, por si alguien lo lo ha advertido, es que el primer tipo de evento puede repetirse cuantas veces se desee mientras que esas elecciones ocurrirán una única vez.

¿La teoría de la probabilidad no extiende la lógica?

Después de haber estado un tiempo —hasta tener que interrumpirlo para convertirme en un elemento socialmente productivo— leyendo sobre cómo la teoría de la probabilidad extiende la lógica (Jaynes, Hacking y compañía), he incurrido en Probability theory does not extend logic. Se trata de un ensayito recomendable pero sobre el que advierto a sus posibles lectores que decae rápidamente de mucho al fango. De él extraigo una interpretación muy heterodoxa de la probabilidad condicional expresada en términos de la lógica de predicados.

Un argumento para usar la normal: la maximización de la entropía

Llegaré a la normal. Antes, algo sobre la entropía. Nos interesa saber y medir el grado de concentración de una distribución. Por ejemplo, si X es una variable aleatoria con función de densidad $latex f(x)$ y $latex x_1, \dots, x_n$ es una muestra de X, entonces, la expresión $$ \frac{1}{n} \sum_i f(x_i)$$ da una idea de la concentración vs dispersión de X: Si es grande, muchos de los $latex x_i$ procederán de lugares donde $latex f$ es grande; en un caso discreto, que tal vez ayude a mejorar la intuición sobre la cosa, habría muchos valores repetidos.

Sobre sumas de cuadrados de normales con varianzas desiguales

En mi entrada anterior mencioné cómo la suma de cuadrados de normales, aun cuando tengan varianzas desiguales, sigue siendo aproximadamente $latex \chi^2$. Es el resultado que subyace, por ejemplo, a la aproximación de Welch que usa R por defecto en t.test. Puede verse una discusión teórica sobre el asunto así como enlaces a la literatura relevante aquí. Esta entrada es un complemento a la anterior que tiene lo que a la otra le faltan: gráficos.

Tres "teoremas" que son casi ciertos

I. Si $X_1, \dots, X_{12}$ son uniformes en [0,1] e independientes, entonces $latex X_1 + \dots + X_{12} - 6$ es una variable aleatoria normal. Puede entenderse como un corolario práctico del teorema central del límite habida cuenta de que la varianza de $latex X_i$ es 1/12 y su media es 1/2. Es útil porque, se ve, en algunos dispositivos embebidos no se dispone de una librería matemática extensa y, se ve, a veces hace falta muestrear la normal.

El teorema de Bayes como la versión modal del modus tollens

El otro día alguien argumentaba (de una manera que no voy a adjetivar): La lógica (proposiciona, de primer orden) es importante (si lo que se pretende es actuar racionalment), la probabilidad no tanto. El teorema de Bayes es solo un resultado trivial dentro de una disciplina mucho menos relevante que la lógica. Ergo, ¿por qué tanto coñacito con el dichoso teorema de Bayes? Como había alguien equivocado en internet, sonaron todas las alarmas que tengo colocadas en casa y tuve que acudir a enderezar el tuerto.

Estos keynesianos ven el mundo de una manera muy, muy loca

[Y no, no me refiero (hoy) a los seguidores del Keynes de la “Teoría general del empleo, el interés y el dinero” sino a los de su “Tratado sobre probabilidades”. Misma persona, distinto libro, distinta disciplina. Y excúseme el “clickbait”: no podía no hacerlo.] Keynes escribió en 1921 su Tratado de probabilidades, según la Wikipedia, una contribución a las bases matemáticas y filosóficas de la teoría de la probabilidad. Le falta añadir descabellada (aunque, como se verá después, tiene su punto), superada y felizmente olvidada.

¿Qué números admiten la distribución de Benford?

[Esta entrada es casi una caracterización de lo que promete el título. Quitarle el casi sería prolijo. Pero creo que casi, casi, se adivina de lo que sigue.] Siempre que hablamos de distribuciones de probabilidad, somos muy conscientes de los requisitos y condiciones bajo las que aplican. Con una excepción: al hablar del manido Benford. En tales casos se suele argumentar de una manera un tanto mística. Y doblemente mística, como consecuencia, cuando toca explicar por qué en ciertos datos concretos no aplica.