Cortos

Comparaciones vs efectos y cuatro asuntos más

Aquí se lee:

Preferimos el término “comparaciones” al de “efectos” en tanto que el primero es más general que el segundo. Una comparación es un efecto solo en aquellos casos en los que el modelo tiene una interpretación causal válida.

En Intrumental variable regression and machine learning se discute cómo aplicar la técnica de las variables instrumentales no con regresiones lineales sino con otro tipo de modelos más generales (y se ilustra con random forests).

Unas cuantas aplicaciones de los LLMs

En la entrada de hoy recopilo unas cuantas aplicaciones de los LLMs.

Enlazo una entrevista a Tyler Cowen discutiendo cómo usa los GPTs. Según extrae NotebookLM de su transcripción, sus principales casos de uso son:

  • Investigar hechos históricos oscuros.
  • Traducir cualquier cosa.
  • Obtener información sobre menús en restaurantes el extranjero.
  • Identifciar plantas y pájaros.
  • Comprender temas complejos y generar preguntas para entrevistas.
  • Obtener información a partir de los diarios personales.
  • Entender las necesidades de su perro.

Aquí, una charla de Simon Willison sobre LLMs en general y sus aplicaciones en particular.

Argumentos para discutir sobre la inteligencia de los LLMs y cuatro asuntos más

I. Visualización

Recopilo aquí cuatro enlaces vagamente hermanados por su relación con la visualización (y los LLMs):

  • Exploración interaectiva de la arquitecturas de ciertos LLMs, aquí.
  • Aquí, en vídeo.
  • Y dos para tokens, este y este.

II. Inteligencia

Dos discusiones, esta y esta, sobre la inteligencia de los LLMs. De la primera rescato eso de que estamos moviendo constantemente la portería de eso que llamamos inteligencia. De la segunda, la vinculación de lo que hacen actualmente los LLMs con el pensar deprisa y despacio de Kahneman.

Otro índice de sorpresa y algún que otro asunto más

I.

Lo que hemos aprendido de lanzar al aire monedas 350757 veces. Del resumen:

  • Hay cierta tendencia (~51%) a que la moneda caiga en el mismo sentido en que estaba al ser lanzada (i.e., que salga cara si al lanzar la moneda, la cara estaba hacia arriba).
  • Hay mucha variación interpersonal.
  • El sesgo decrece conforme la misma persona lanza las monedas más y más veces.

II.

Si alguien os pregunta de algún caso en el que se explica una cosa oscura de manera todavía más oscura, mostradles Desorden y predicción en series trimestrales.

Descuentos para RCTs algunos asuntos más

I.

Si algo aprendemos en Why any estimate of the cost of climate change will be flawed es cómo los resultados de los modelos dependen críticamente de las prioris (de todo tipo, incluso aquellas entendidas en sentido amplio que se aplican en análisis no necesariamente bayesianos).

II.

El artículo reseñado aquí me ha recordado esto que escribí hace tiempo. Y, a su vez, me ha permitido constatar que no tengo ninguna entrada específica sobre uno de mis resultados empíricos favoritos: el llamado teorema de la imposibilidad de la Super Bowl.

"El problema de la academia" y cuatro asuntos más

I.

Aquí dice lo que con mi traducción suena así:

El problema de la academia no es el plagiarismo. En economía, un secreto que la academia guarda celosamente es que casi toda la investigación es inválida o inútil por varios motivos.

¿Qué hacer? No leer.

II.

¿Y en estadística? Aquí se cita la frase

Gran parte de la estadística del siglo XX es una pérdida de tiempo consistente en calcular respuestas precisas a preguntas irrelevantes.

Un par de novedades de R 4.4.0 y algunos otros asuntos más

I.

Una vulnerabilidad asociada a R y un análisis sobre la intrahistoria de la misma. Se refiere a la importación acrítica de ficheros binarios de datos en R, en el que un agente malicioso puede haber insertado código que no quieres ver corriendo en tu máquina.

II.

Hay gente que busca asociaciones en tablas con millones de celdas, la mayor parte de las cuales tienen valores 0 o 1. Es un problema con la peor de las pintas del mundo, pero hay artículo y código.

Regresiones con discontinuidad y algunos otros asuntos

I.

A veces te tropiezas con algún conocido en algún sitio fuera de donde lo frecuentas y lo saludas con un “¿qué haces tú por aquí?”.

El otro día, leyendo sobre aquellos audaces emprendedores de siglos atrás que perseguían móviles perpetuos tropecé con William Petty, nada menos.

II.

Tomas varias fotos de un mismo motivo y las combinas (o apilas) usando distintas técnicas. Guillermo Luijk nos ilustra con lo que pasa cuando usas el mínimo, el máximo, la media y la mediana como funciones de agregación.

Embeddings, LLMs y algunas de sus aplicaciones a mediados de 2024

I.

Están apareciendo herramientas basadas en LLMs para industrializar la investigación. Tengo recopiladas, por el momento, cuatro: Consensus, Zotero, Elicit, Tavily y FutureSearch. De vez en cuando pruebo Consensus para valorar cómo va mejorando. Y le queda: la última vez, al preguntarle sobre el procedimiento científico para reproducir la dipladenia por esquejes, me sugirió algo así como aplicarle rayos gamma (!).

II.

Unos cuantos enlaces sobre aplicaciones reales —en la economía real— de los LLMs (y los LMMs) en diversas áreas, como el vídeo (vía sora), la música (vía suno), la programación (vía devin) o el RAG y/o Finetuning.

Alberto Olmos sobre los microfundamentos y cuatro asuntos más

I.

Juan Cambeiro escribe en Asterisk What Comes After COVID. El covid nos aburre y no nos interesa, pero el artículo es un ejercicio de “probabilidad aplicada” —en el que se estudia cuándo y qué causará la próxima pandemia, pero eso es casi lo de menos— del que muchos podrán sacar provecho.

II.

La mayor parte de los artículos en economía son inútiles; todos los involucrados lo saben. Fuera del primer cuartil, todo es esencialmente es una estafa que no sobreviviría una revisión crítica."

Algunas novedades tecnológicas que he recopilado en los últimos tiempos (no todas rompedoramente nuevas)

Últimamente he creado muchas pequeños scripts en Python con parámetros de todo tipo. Tanto esta entrada para los principios generales como, por supuesto, los LLMs más habituales, me han acabado ahorrando horas y horas de trabajo.

shelmet, un paquete de Python para interactuar con la shell, está comenzando a aparecer en la cabecera de mis scripts.

Estoy creando cada vez más diagramas como parte de la documentación de mis proyectos. Ninguna herramienta es tal como me gustaría, pero la más próxima a la que consideraría ideal que he encontrado por el momento es Excalidraw.