R

Mi apuesta para el larguísimo plazo: Julia

  • Larguísimo, arriba, significa algo así como 10 o 20 años. Vamos, como cuando comencé con R allá por el 2001.
    • R es, reconozcámoslo, un carajal. Pocas cosas mejores que esta para convencerse.
    • No dejo de pensar en aquello que me dijo un profesor en 2001: que R no podría desplazar a SAS porque no tenía soporte modelos mixtos. Yo no sabía qué eran los modelos mixtos en esa época pero, desde entonces, vine a entender y considerar que “tener soporte para modelos mixtos” venía a ser como aquello que convertía a un lenguaje para el análisis de datos en una alternativa viable y seria a lo existente. Y mirad esto.
    • Obviamente, lo de los modelos mixtos no es más que una metáfora. Realmente significa algo así como “el sistema X tiene muchas cosas y su alternativa, Y, es un mero juguete”. Pero no hay nada que impida que Y comience a implementar todo aquello que le falta. Además, mucho más rápida y eficientemente. P.e., ¿cuánto tardó R en dotarse de su gramática de los gráficos? Pues bien, Juilia ya los tiene. (¿Cómo se dice leapfrog en español?)
    • Dicho de otra manera, R ha sido el estado del arte en computación estadística en los últimos años. Ha avanzado por prueba y error. Pero ahora, cualquier rival ya sabe qué tiene que hacer exactamente para llegar a donde está R.
    • Julia corre sobre LLVM. Es decir, que se beneficia automáticamente de cualquier mejora realizada sobre la máquina virtual (si es que se me permite llamar así a LLVM).
    • Esta semana he estado programando en C unas rutinas que tienen que ser llamadas desde R. Pero, ¿no sería el mundo más hermoso no tener que cambiar de lenguaje para tener rendimiento de C?
    • Arriba comparo R y Julia como extremos de un arco (en el que a la izquierda de R quedan aún irrelevancias como SAS o SPSS). Python ocupa una posición intermedia entre ambos. Desde un punto de vista meramente técnico, si alguna dimensión es Python mejor que R, Julia es todavía mejor que Python. Salvo, de nuevo, la cantidad de flecos y cascabeles de los que ya dispone Python y que todavía no están presentes en Julia. Pero, como se ha dicho arriba, desde la perspectiva del larguísimo plazo, es una objeción irrelevante que apunta a un estado transitorio de las cosas.

Y supongo que podría seguir.

PCA robusto

Esta semana he descubierto el PCA robusto. En la frase anterior he conjugado el verbo en cursiva porque lo he pretendido usar con un significado que matiza el habitual: no es que haya tropezado con él fortuitamente, sino que el PCA robusto forma parte de esa inmensa masa de conocimiento estadístico que ignoro pero que, llegado el caso, con un par de clicks, una lectura en diagonal y la descarga del software adecuado, puedo incorporarlo y usarlo a voluntad.

Un viejo truco para que R vuele

R

Existe un viejo truco —mas no por ello conocido— para que R vuele. Lo aprendí en una conferencia de uno de los padres de R (aunque ya no recuerdo quién era) en la primera década del siglo. El problema que tenía entre manos era el de ajustar unos cuantos miles de regresiones logísticas. Además de hacer uso de los métodos de paralelización, aún muy rudimentarios en la época, uno de los trucos más efectivos que utilizaba era el de desnudar las funciones.

Hay mil motivos para criticar una regresión "trucha", pero una R² baja no es uno de ellos

Todo esto arranca con el tuit:

Esa gráfica, extraída de un documento de la OCDE, creo, fue uno de los argumentos esgrimidos por JR Rallo para defender cierta postura que no viene al caso. Lo relevante para estas páginas es que fue contestado y protestado por muchos —de algunos de los cuales, dada su autoproclamada condición de divulgadores científicos, cabría esperar más— en términos exclusivamente de lo pequeño de la R².

Análisis de eventos recurrentes

He sido fan del análisis de los eventos recurrentes desde antes incluso de saber que existía tal cosa formalmente.

Es una extensión del análisis de la supervivencia donde resucitas y vuelves a morirte a lo Sísifo. Es decir, en el análisis de la supervivencia, te mueres y ya; por eso, si quieres extender el análisis de la supervivencia a asuntos tales como compras de clientes es necesario usar el calzador muy heterodoxamente.

IGN + R + leaflet

Iba a escribir una entrada técnica al respecto, pero resulta que ya la había hecho hace un tiempo y no me acordaba.

Solo quiero abundar en el tema para recordaros que si os interesa mostrar mapas de España vía leaflet, en lugar de usar las capas por defecto, que vaya a saber uno de dónde las sacan, uno siempre puede tirar de la cartografía oficial.

Uno de los motivos puede ser que el mapa forme parte de una aplicación seria. Y las (o ciertas) capas por defecto de leaflet muestran hasta los puticlús,

En defensa de iris

R

El archiconocido conjunto de datos iris es víctima reciente de un ataque relacionado con su pecado original: haber tenido unos padres estigmatizados hoy por su otrora popular idea de que gracias a la ciencia podríamos construir un futuro mejor.

También ha sido víctima de ataques, esta vez más endógenos, relacionados con lo menguado de su tamaño y lo trivial de su estructura.

Vengo aquí a romper una lanza —tres, más bien— en favor de este muy querido de los más conjunto de datos. Tres lanzas esgrimidas, como se verá, en contextos, con fines y ante públicos muy concretos.

Esto no es práctico, pero sí bonito; bonito, además, de esa forma inasequible a la chusma

Va de muestrear los números $1, \dots, n$ que tienen asignadas probabilidades $p_1, \dots, p_n$. Una manera muy impráctica (en R, basta usar sample) y nada intuitiva de hacerlo es recurriendo a la distribución de Gumbel:

library(evd)

pes <- runif(5)
pes <- pes / sum(pes)
gammas <- log(pes) + 2
x <- rgumbel(length(pes))
muestra <- which.max(gammas + x)

O, en masa, aplicando

get_samples <- function(n){
    replicate(n, {
        x <- rgumbel(length(pes))
        which.max(gammas + x)
    })
}

El seudocódigo está extraído de la Wikipedia y el motivo por el que la cosa funciona en lugar de no funcionar, que es la parte bonita del asunto, está explicado aquí.

Una herramienta para el análisis no paramétrico de series temporales

R

Sí, es un ejemplar de mi colección de rarezas estadísticas, técnicas que no entran dentro del currículo estándar pero que pudieran resultar útiles en algún momento, para algún caso particular.

Hoy, perfiles matriciales para series temporales, una técnica que sirve esencialmente, para identificar formas que se repiten en series temporales, como

Entiendo además que, como consecuencia, también para señalar aquellos ciclos en que se produzcan perfiles anómalos, para su evaluación. Pero dejo que consultéis la información en, por ejemplo, aquí y aquí.