Funciones de densidad log-cóncavas
Las funciones de densidad log-cóncavas son aquellas cuyo logaritmo es una función cóncava. Por ejemplo, la normal: el logaritmo de su función de densidad es, constantes aparte, $-x^2/2$.
El producto de dos funciones de densidad log-cóncavas es log-cóncava: $\log(fg) = \log f + \log g$ (y la suma de cóncavas es cóncava: calcula la segunda derivada). También lo son la suma de dos variables aleatorias cuyas funciones de densidad lo son (la demostración es consecuencia de esta desigualdad).