mortalidad

Más sobre el exceso de mortalidad en noviembre de 2021

Esta entrada abunda sobre la que publiqué hace unos días y va a tener un enfoque mucho más general y estadístico. La idea fundamental es la siguiente: Un modelo estadístico es una idealización de la realidad. Es una idealización en tanto que descarta información. Lo deseable sería que los modelos incorporasen toda la información relevante disponible respecto al fenómeno al que se refieren —y de ahí la ventaja que muchos ven en la estadística bayesiana—, pero eso resulta imposible.

Sobre el exceso de mortalidad en noviembre de 2021

[Nota: trabajé —pero desde hace muchos meses ya no— en MoMo. Así que algo sé al respecto. No obstante, las opiniones reflejadas aquí son enteramente mías. Además, están escritas desde una perspectiva estadística, no epidemiológica o, por extensión, médica.] Han aparecido ciertas noticias en prensa acerca del exceso de mortalidad reflejado por MoMo —más sobre MoMo, aquí— durante el mes de noviembre de 2021 (véase esto o esto). La tónica general de los artículos es la del desconcierto de los expertos, que ni se explican ni se atreven a explicarnos posibles motivos del repunte de la mortalidad.

Comentarios varios sobre un artículo de El País sobre MOMO

[Esta entrada ha sido enmendado con respecto a cómo fue publicada originalmente por los motivos que abajo se indican.] El artículo es El Instituto de Salud Carlos III subestima las muertes de la segunda ola y los comentarios, estos: El artículo trata un tema conocido de muchos, la infraestimación que hace el actual sistema MOMO de los excesos de mortalidad y cuyos motivos comenté extensamente el otro día. Dice, muy acertadamente:

z-scores, p-scores y el problema de las áreas pequeñas

Uno de los problemas que encuentra uno al monitorizar series temporales en diversas escalas es la de encontrar una métrica de desviaciones de la normalidad (al menos en tanto que los sectores en los que trabajo no se pueblen de postmodernistas que comiencen a cuestionar qué es eso de la normalidad y a argumentar que si es un constructo tan injusto como inasequible) que cumpla una serie de requisitos: El primero y fundamental, que detecte efectivamente desviaciones de la normalidad.

Charla sobre cosas que no te han contado sobre le modelo de Poisson (y de paso, el logístico)

Este es un anuncio de una charla que daré este viernes (2020-09-18) dentro del congreso virtual EncuentRos en la fase R. Ni que decir tiene que los detalles logísticos pueden consultarse en el enlace anterior. Hablaré de cuestiones relativas al modelo de Possion (gran parte de las cuales pueden trasladarse también al logístico) de las que se habla poco y sobre las que la teoría que uno tropieza por ahí no es del todo clara pero que se manifiestan claramente en datos como los de la monitorización de la mortalidad, que será discutida también de pasada.

Recordatorio: no olvidéis restar los fallecimientos atribuibles al calor en la estimación del efecto de la "segunda ola"

La estimación de la mortalidad atribuible a la gripe estacional (que no, que no se hace consultando la causa de muerte que consignan los médicos medio al buen tuntún por motivos administrativos y que luego recoge el INE, como parece que dan a entender estos beneméritos verificadores para la confusión de quienes den su palabra por buena) tiene una complicación sustancial: ocurre simultánea y co-casualmente con el frío, que incrementa las defunciones por motivos otros.

Un recordatorio: MOMOCalor está "up and running"

Por desgracia, MoMo ya no exige presentación. Pero con los termómetros acariciando los 40º no está mal recordar la existencia de MoMoCalor, su hermanito, que trata atribuir mortalidad a los excesos de temperaturas. ¿Por qué es particularmente importante MoMoCalor hoy? Recuérdese que MoMo estima, simplemente, desviaciones de mortalidad con respecto a la que sería la normal en una fecha determinada. Cuando hay una epidemia o una ola de calor, la mortalidad crece y MoMo lo detecta.

Wikipedia y causas de muerte

Es entretenido echar un vistazo a las causas de muerte más comunes (y todavía más, a las más raras) de la gente que aparece en la Wikipedia (y que tiene una causa de muerte informada en la caja lateral). Son estas. Se puede jugar más con el asunto corriendo select ?cod (count(distinct ?who) as ?count) where {?who <http://dbpedia.org/ontology/deathCause> ?cod.} order by desc(?count) y sus variantes aquí.

Defunciones: INE vs MoMo

[Fe de errores: en varias secciones de lo que sigue se hace referencia a 2018 como año completo. En realidad, solo se están usando los datos de los trimestres 2, 3 y 4 de 2018, que es en los que hay solapamiento entre los datos del INE y de MoMo.] Es un error tomar las cifras de MoMo literalmente. Está explicado por doquier: MoMo no es el INE sino un sistema de alerta temprana por mortalidad.

MoMo: una documentación oficiosa

Estos días se habla de MoMo y por primera vez en quince años largos, el público está contemplando gráficas como que resumen lo más jugoso del sistema. MoMo (de monitorización de la mortalidad) es un sistema desarrollado por el ISCIII para seguir en tiempo casi real la evolución de la mortalidad en España. Utiliza como fuente de datos fundamental la procedente de los registros civiles informatizados, que son la práctica mayoría (aunque no todos: queda excluido ~5% de la población).

¿En primavera? ¿En serio? Ni de coña

Hubo un tiempo en el que había que hacer caso a Aristóteles. Era lo que se esperaba de toda persona culta de la época. Así que, supongo, o te fiabas de lo que ven tus propios ojos o dabas por bueno que las mujeres tenían menos dientes. Hoy nos piden que hagamos caso de nuestras autoridades sanitarias. Incluso, supongo, cuando dicen que el periodo más bajo de mortalidad en España ocurre en primavera (fuente).

Casos de coronavirus en Madrid provincia: un modelo un poco menos crudo basado en la mortalidad (II)

[Nota: el código relevante sigue estando en GitHub. No es EL código sino UN código que sugiere todos los cambios que se te puedan ocurrir. Entre otras cosas, ilustra cómo de dependientes son los resultados de la formulación del modelo, cosa muchas veces obviada.] Continúo con la entrada de ayer, que contenía más errores que información útil respecto a objetivos y métodos. Los objetivos del análisis son los de obtener una estimación del número de casos activos de coronavirus en la provincia de Madrid.