Ridge

Unas cuantas notas sobre estadística

Uno de los metaprincipios de la construcción de modelos estadísticos es que la calidad de los modelos es función de la cantidad de información que hay en los datos de entrenamiento. No existe el bootstrap en el sentido etimológico del término: no puede uno levantarse en el aire tirando hacia arriba de los cordones de los zapatos. Pero al hilo de una noticia reciente, Gelman discute si añadir ruido a los datos permite reducir el sobreajuste. Además, en la discusión al respecto, alguien cita el artículo de 1995 Training with Noise is Equivalent to Tikhonov Regularization, una especie de penalización en el tamaño de los coeficientes al modo de la regresión ridge.

Sobre los coeficientes de los GLM en Scikit-learn

Pensé que ya había escrito sobre el asunto porque tropecé con él en un proyecto hace un tiempo. Pero mi menoria se había confundido con otra entrada, Sobre la peculiarisima implementacion del modelo lineal en (pseudo-)Scikit-learn, donde se discute, precisamente, un problema similar si se lo mira de cierta manera o diametralmente opuesto si se ve con otra perspectiva.

Allí el problema era que Scikit-learn gestionaba muy sui generis el insidioso problema de la colinealidad. Precisamente, porque utiliza un optimizador ad hoc y no estándar para ajustar el modelo lineal.