Berkson

Un par de paradojas de la teoría de la probabilidad y algunos asuntos más

Comienzo la entrada de hoy con un enlace al muy denso Interpretations of probability, en la Enciclopedia de Filosofía de Stanford que, admito, no será del interés de la mayoría.

Podría llegar a decirse —aunque no me atreveré a tanto— que en toda disciplina intelectual tiene que haber paradojas porque de otra manera, sería indistinguible del uso sistemático del sentido común. Así que hoy traigo a colación este análisis de un caso particular de la paradoja de Berkson (que se añade a las ocasiones en las que ya me he referido a ella) y este otro sobre la de Lindley. La primera tiene que ver con la correlación que aparece entre dos variables aleatorias independientes cuando de repente observamos información concomitante; la segunda, con los test de hipótesis (asunto del que, por fortuna, me he mantenido alejado durante largo tiempo).

Más sobre la paradoja de Berkson

  • a: eres listo
  • b: has estudiao
  • c: la nota del examen

Se supone que a y b son independientes. Pero conocido c, dejan de serlo (saber que eres listo y que has suspendido nos dice que…).

Esto no es exactamente pero se parece a (o, más bien, es un caso que generaliza) la llamada Paradoja de Bergson, de la que hablé hace unos años.

La paradoja de Berkson

Queremos calentar unas empanadas en el horno y, ¡oh desgracia!, no funciona. Pueden pasar dos cosas (independientes entre sí):

  • El horno está estropeado ($latex A$)
  • El horno está desenchufado ($latex B$)

Hemos observado el evento $latex A \cup B$ y nos preocupa mucho $latex P(A | A \cup B)$, es decir, que tengamos que llamar al técnico y comernos frías las empanadas a la vista de que el horno no responde.