modelos jerárquicos

Por supuesto que tengo más variables que observaciones... ¿y?

He intentado replicar los resultados de la entrada de ayer con GAM (vía mgcv) así (véase el enlace anterior para la definición de los datos): library(mgcv) modelo_gam <- gam( y ~ x + s(id, bs = "re"), data = datos, method = "REML", family = "poisson") Y nada: Error in gam(y ~ x + s(id, bs = "re"), data = datos, method = "REML", : Model has more coefficients than data

Un modelo jerárquico para lo de Casillas

Vuelvo a lo de Casillas inspirándome en el primer ejemplo de este artículo de Gelman et al. El planteamiento es el siguiente: el número de paradas, $latex n_i$ que realiza el $latex i$-ésimo portero tiene una distribución binomial $$ n_i \sim B(N_i, p_i)$$ donde $latex N_i$ es el número de disparos entre los palos y $latex p_i$ es la habilidad innata del portero. Estas habilidades innatas siguen una distribución dada, la de habilidades innatas de los porteros de primera división, que podemos suponer que sigue una distribución beta