Welch

Sobre sumas de cuadrados de normales con varianzas desiguales

En mi entrada anterior mencioné cómo la suma de cuadrados de normales, aun cuando tengan varianzas desiguales, sigue siendo aproximadamente $latex \chi^2$. Es el resultado que subyace, por ejemplo, a la aproximación de Welch que usa R por defecto en t.test. Puede verse una discusión teórica sobre el asunto así como enlaces a la literatura relevante aquí.

Esta entrada es un complemento a la anterior que tiene lo que a la otra le faltan: gráficos. Al fin y al cabo, es un resultado que se prueba a ojo: efectivamente, la suma de […] tiene aspecto de $latex \chi^2$, determinemos su parámetro.

Tres "teoremas" que son casi ciertos

I.

Si $X_1, \dots, X_{12}$ son uniformes en [0,1] e independientes, entonces $latex X_1 + \dots + X_{12} - 6$ es una variable aleatoria normal.

Puede entenderse como un corolario práctico del teorema central del límite habida cuenta de que la varianza de $latex X_i$ es 1/12 y su media es 1/2.

Es útil porque, se ve, en algunos dispositivos embebidos no se dispone de una librería matemática extensa y, se ve, a veces hace falta muestrear la normal. Más, aquí.

Experimentos con "extremely small data": la media muestral de pocas betas

Aquí, contracorriente. Dejamos aparcado el big data y le damos a lo que nos da de comer. Entre otras cosas, este pequeño experimento con muy pequeños datos (¿tres?).

La aplicación es real. Y los datos pequeños porque son carísimos.

Se puede suponer que tienen distribución beta de parámetros desconocidos. Nos interesa la media muestral de unas pocas observaciones: dos, tres, cuatro,… En particular, qué distribución tiene.

Si fuesen muchos, podríamos aplicar el teorema central del límite (que funciona estupendamente incluso con valores no muy grandes). Pero la suma de pocas observaciones beta no tiene una distribución con nombre (que yo sepa). Pero podemos usar un viejo truco (parecido al de la aproximación de Welch para el número de grados de libertad de la prueba de Student cuando las varianzas son desiguales):