Clasificación vs predicción

Traduzco de aquí:

Es crucial distinguir predicción y clasificación. En el contexto de la toma de decisiones, la clasificación es una decisión prematura: la clasificación combina predicción y decisión y usurpa al decisor la consideración del coste del error. La regla de clasificación tiene que reformularse si cambian las recompensas o la base muestral. Sin embargo, las predicciones están separadas de las decisiones y pueden ser aprovechadas por cualquier decisor.

La clasificación es más útil con variables objetivo no estocásticas o determinísticas que ocurren frecuentemente y cuando no ocurre que dos sujetos con los mismos atributos pueden tener comportamientos distintos. En estos casos, la clave es modelar las tendencias (es decir, las probabilidades).

La clasificación debería usarse cuando las variables objetivo son claramente distintas y los predictores disponibles bastan para proporcionar a cada sujeto una probabilidad próxima al 100% de pertenencia a las clases.

El resto es tanto o más aprovechable.

Comenta

Your email address will not be published.

Puedes usar estas etiquetas y atributos de HTML: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code class="" title="" data-url=""> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> <pre class="" title="" data-url=""> <span class="" title="" data-url="">

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.