Separación

Separación perfecta en el modelo de Poisson

El asunto de la separación perfecta en el modelo logístico es sobradamente conocido. Solo quiero añadir al respecto dos cosas que no se suelen decir:

  • Es un dolor que solo duele a los frecuentistas que no usan regularización (y van quedando cada vez menos de esos).
  • Que no es malo sino bueno: ¿qué cosa mejor que tus datos puedan responder categóricamente las preguntas que les planteas (supuesto, claro, está, un N suficientemente grande).

Lo que es menos conocido es que el problema de la separación perfecta también puede afectar a la regresión de Poisson.

Modelos con inflación de ceros y separación perfecta

Al estudiar problemas de conteos, la llamada inflación de ceros ocurre frecuentemente: los datos contienen más ceros de los que ocurrirían según las distribuciones habituales (Poisson, binomial negativa). Un modelo con inflación de ceros es una mezcla (mixtura) de un modelo de conteos y una distribución de Dirac (en cero).

Las técnicas habituales para resolverlos involucran (explícita o implícitamente) una estructura jerárquica de modelos: primero, uno (similar a una logística), separa las observaciones que corresponderían a la Dirac del resto. Un segundo modelo de conteos trata de ajustar el segundo.