La emergencia (y el éxito) del llamado aprendizaje profundo (deep learning) plantea innumerables cuestiones matemáticas. Algunos algoritmos funcionan (y otros muchos que han quedado en los cajones no, obviamente) y no está muy claro por qué. He aquí una lista de siete problemas que el aprendizaje profundo ha colocado enfrente de la comunidad matemática:
¿Cuál es el papel de la profundidad en las redes neuronales? (En el fondo, una red neuronal no deja de ser una función que aproxima otra desconocida; en matemáticas abundan los procedimientos y resultados para aproximaciones planas (p.
Estos días pasados he tenido que usar autoencoders como mecanismos para reducir la dimensión de una serie de conjuntos de datos. El principal problema al que me he enfrentado —cómo no— ha sido el de diseñar una arquitectura adecuada para el problema en cuestión. El principal motivo es que la práctica totalidad de los tutoriales, ejemplos, etc. disponibles por ahí tienen como aplicación principal el tratamiento de imágenes y en mi caso no.
I. Motivación e introducción Denoising diffusion —DD en lo que sigue— es uno de los principales ingredientes del archipopular stable diffusion. Es un algoritmo que se usa fundamentalmente para generar imágenes y que funciona, a grandes rasgos así:
Se parte de un catálogo de imágenes, que son vectores en un espacio (de dimensión alta). Esos vectores se difuminan utilizando un proceso concreto —piénsese en una especie de movimiento Browniano— hasta que su distribución es aproximadamente una normal (en ese espacio de dimensión elevada).
Supongamos que tenemos un modelo construido sobre unos datos $(x_i, y_i)$. Para cada $x_i$, el valor $y_i$ es una realización de una variable aleatoria $Y_i$ con distribución $F_i(y)$. Por simplificar, podemos suponer, además, que para el ajuste se utiliza el error cuadrático.
Entonces, lo mejor que puede hacer el modelo es encontrar la media $\mu_i$ de cada $Y_i$ —bueno, en realidad, querría encontrar $\mu_x$ para cada $x$ potencial, pero hoy vamos a dejar esa discusión aparcada—.
Por motivos que quedarán claros en entradas futuras, he estado investigando sobre medidas de proximidad entre distribuciones de probabilidad. En mi caso concreto, además, multidimensionales (y de dimensión alta, en $R^N$, con $N$ del orden de docenas o centenas).
Supongamos que tenemos dos variables aleatorias $X, Y \in R^N$ y queremos ver estudiar en qué medida son próximas sus distribuciones. Idealmente, además, utilizando un método que pueda utilizarse a través de muestras de dichas variables.
Dice (y traduzco) François Chollet en su libro sobre aprendizaje profundo:
[…] la hipótesis de la variedad [manifold hypothesis] consiste en que todos los datos naturales están situados sobre una variedad de dimensión baja dentro del espacio de alta dimensionalidad en el que están cosificados. Es una hipótesis muy fuerte sobre la estructura de la información en el universo. Pero, por lo que sabemos hasta la fecha, no solo se cumple sino que es el motivo por el que el aprendizaje profundo funciona.
Esta entrada es una breve introducción a los conceptos indicados en el título. Está motivada por una pregunta que se formuló en Twitter acerca de la existencia o no de lo que voy a escribir en español y a que ninguna de las respuestas aportadas me satisfizo.
Todos esos conceptos hacen referencia al estudio de la bondad de un modelo de clasificación (es decir, un modelo que trata de predecir una etiqueta (o una variable categórica, si se quiere) a partir de ciertos datos).
Los modelos generativos —aunque aquí generativo se use en un sentido distinto del habitual en estas páginas— están de moda (véase esto o esto). Estas aplicaciones están basadas en una serie de técnicas que el siguiente diagrama (extraído de aquí) resume estupendamente:
La más reciente de todas estas técnicas y la que subyace a las últimas y más sorprendentes aplicaciones es la de los llamados modelos de difusión. Les he estado echando un vistazo y esta entrada resume lo que he aprendido de ellos.
Los generalized random forests (GRF en lo sucesivo) han cobrado cierta relevancia recientemente porque una de sus potenciales variantes son los llamados causal forests: RRFF adaptados para medir el tamaño de una intervención causal.
Lo que voy a contar aquí es un resumen de lo que aprendí echándole un vistazo al artículo relevante de la cosa.
[Nota: voy a simplificar un poco con respecto a lo que aparecen en el artículo por aligerar la introducción; recuérdese: este es un mapa del territorio y el territorio en sí mismo.
Esta es una entrada básica orientada a quienes comienzan en el mundo del análisis de datos y se enfrentan a uno de sus primeros retos en solitario. Contiene consejos que no son de aplicación universal, dependen del contexto y están sometidos a revisión y adecuación a las circunstancias concretas. Cada maestrillo tiene su librillo y esta es una versión simplificada del mío.
Un proyecto vive un directorio Un proyecto vive en un directorio.
Larguísimo, arriba, significa algo así como 10 o 20 años. Vamos, como cuando comencé con R allá por el 2001. R es, reconozcámoslo, un carajal. Pocas cosas mejores que esta para convencerse. No dejo de pensar en aquello que me dijo un profesor en 2001: que R no podría desplazar a SAS porque no tenía soporte modelos mixtos. Yo no sabía qué eran los modelos mixtos en esa época pero, desde entonces, vine a entender y considerar que “tener soporte para modelos mixtos” venía a ser como aquello que convertía a un lenguaje para el análisis de datos en una alternativa viable y seria a lo existente.
Contexto: Una empresa tiene una serie de técnicos repartidos por todas las provincias que tienen que hacer visitas y reparaciones in situ a una serie de clientes dispersos. La empresa cuenta con un departamento técnico central que asigna diariamente y, fundamentalmente, con herramientas ofimáticas las rutas a cada uno de los técnicos.
Alternativas tecnológicas:
Machín Lenin: Unos científicos de datos usan algoritmos de enrutamiento para crear una herramienta que ayuda (o reemplaza total o parcialmente) al equipo técnico de las hojas de cálculo para generar rutas óptimas que enviar diariamente a los técnicos.
Acabo de subir a Youtube mi último vídeo:
En él analizo este hilo de Twitter en el que su autor describe un proyecto muy particular —heterodoxo— de ciencia de datos cuyo objetivo consiste identificar y prevenir la fuga de clientes. El hilo ha circulado todo lo viralmente que permite el tema y me ha parecido interesante sacarle un poco de punta.