Factorización no negativa de matrices Carlos J. Gil

Bellosta datanalytics

Motivación

¿SVD

iNME

Una

probabilística

NMF y LD/

Factorización no negativa de matrices Una aplicación a los motores de recomendación

Carlos J. Gil Bellosta cgb@datanalytics.com

Febrero de 2015

Carlos J. Gil Bellosta datanalytics

Motivación

· C\/D

. 5.15.41

.

interpretación probabilística

NMF y LD.

¿Son así nuestros súper súper clientes?

Fuente: Rich and Famous http://rf.ro

Carlos J. Gil Bellosta datanalytics

Motivación

;SVD

: NIM:

interpretación probabilística

NMF y LD.

Datos "diádicos" (¿matrices?)

	T_1	T_2	 T_m
C_1	0	3	 1
C_2	2	1	 0
			 0
C_n	1	0	 1

Tenemos n clientes (filas) y m (tipos de) productos (columnas).

Objetivo

Entender (¿microsegmentar?) los gustos y preferencias de los clientes.

iNMF!

interpretación probabilística

NMF y LDA

Lo primero que se te ocurre: SVD

La descomposición en valores singulares (SVD) de X:

$$X = UDV$$

donde:

- D es una matriz diagonal con entradas $d_1 \geq d_2 \geq \cdots \geq 0$.
- Las columnas (filas) de U (V) son ortogonales.

Una

probabilística

NIVIF y LDA

Recomposición del comportamiento de un cliente

El comportamiento de un cliente es su fila de X. El comportamiento del cliente i sería

$$X_i = \sum_j u_{ij} d_j v_j.$$

Interpretación:

- Las filas de V, v_j son preferencias comunes a todos los clientes.
- Cada cliente asigna un valor a dichas preferencias en función de su fila (la i) en U.
- Los valores d_i son pesos globales de cada *preferencia*.

Carlos J. Gil Bellosta datanalytics

Motivación

IVIOLIVACIO

¿SVD?

liaivii :

interpretación probabilística

NMF y LD

Reducción de la dimensionalidad

¿Qué si ignoramos aquellas preferencias de menor peso?

Carlos J. Gil Bellosta datanalytics

Motivación

¿SVD?

iNMF

interpretación probabilística

NMF y LDA

Interpretación de las preferencias

¡Buena suerte con los signos negativos!

iNMI

interpretación probabilística

NMF y LDA

Pros, cons y un canje razonable

- Nos gusta la descomposición X = UDV.
- Nos gusta la posibilidad de reducir la dimensionalidad de la matriz original (aun perdiendo algo de precisión).
- Nos gustaría poder canjear la ortogonalidad por otra propiedad que facilitase la interpretación.

Un canje razonable

Perder la ortogonalidad a cambio de que u_{ij} , $v_{ij} \ge 0$.

:NMF!

Una interpretación probabilística

NMF y LD/

Factorización no negativa de matrices

Es posible encontrar matrices U y V donde

- Como antes (casi) X ~ UV donde U y V son matrices positivas.
- Como antes (casi) es posible reducir la dimensionalidad descartando columnas (filas) de U (V).
- Se pierde la ortogonalidad (¡necesariamente!).

Interpretación:

- Las filas de *V* siguen siendo preferencias.
- Las filas de *U* son los pesos que un cliente asigna a las distintas preferencias.
- ¡Qué bien si hubiese muchos ceros!

:NMF!

Una interpretación probabilística

NMF y LD

Algoritmos y herramientas

Algoritmos:

- NMF es un problema NP-completo (me dicen).
- Existen algoritmos heurísiticos, aproximados, etc.

Herramientas:

- Paquete NMF de R (para matrices pequeñas y medianas).
- GraphLab para matrices grandes en clústers (¡buena suerte compilando!)
- GraphChi para matrices algo menos grandes (en una única máquina).

:NMF

Una interpretación probabilística

NMF y LDA

De números positivos a probabilidades

Si U y V son positivas, pueden encontrarse matrices D, \tilde{U} y \tilde{V} tales que

$$UV = D\tilde{U}\tilde{V}$$

donde

- D es una matriz diagonal y $d_i \geq 0$.
- ullet $ilde{U}$ y $ilde{V}$ son matrices positivas.
- ullet Cada fila de $ilde{U}$ suma 1.
- Cada fila de \tilde{V} suma 1.

Y valores positivos que suman 1 son... ¡probabilidades! (Nota: en lo sucesivo ignoraremos las tildes de $U \vee V$.)

iNMF

Una interpretación probabilística

NMF y LD

Una mezcla (mixture) de multinomiales

- La estructura probabilística revelada es la de una mezcla (*mixtura*) de multinomiales.
- Las filas de *V* son un menú de preferencias.
- Estas preferencias son distribuciones multinomiales con probabilidades dadas por los valores de esas filas.
- Las filas de *U* son los pesos de la mezcla.
- Los valores de la diagonal de D son el número (¿entero?)
 de muestras extraídas de cada cliente.

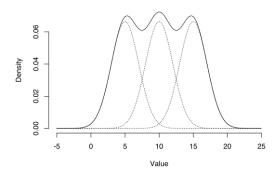
Carlos I Gil Bellosta datanalytics

Una interpretación probabilística

Mezclas de variables aleatorias

Dadas variables aleatorias X_1, \ldots, X_n , una mezcla de ellas con pesos p_1, \ldots, p_n donde $p_i > 0$ y $\sum p_i = 1$ es otra variable aleatoria que se muestrea así:

- 1 Se elige una v.a. de entre las X_1, \ldots, X_n con probabilidad dada por los p_1, \ldots, p_n .
- 2 Se obtiene un valor de ella.



: NIM :

Una interpretación probabilística

NMF y LDA

Interpretabilidad y más

- 1 Tenemos una lista de preferencias comunes a los clientes
- 2 Son tanto o más interpretables cuantos más ceros tengan, cuanto más puras sean
- 3 Los clientes se clasifican de acuerdo con su (desigual) apego a ellas

Otras cuestiones:

- 1 Cuando aparece un cliente nuevo, es posible asignarle unas preferencias (i.e., sus pesos)
- 2 ¿Qué pasaría con clientes de los que no tienes información en absoluto? ¿Te treverías con un enfoque bayesiano?

NMF y LDA

NMF... ¿LDA para pobres?

¿Latent Dirichlet Allocation?

- 1 Un documento contiene palabras y trata uno o más temas.
- 2 Las palabras aportan información sobre el tema al que se refiere el documento.
- 3 Es posible construir algoritmos que detectan temas o que permiten identificar los temas a los que se refiere un documento.
- 4 Es una técnica bayesiana donde las distribuciones a priori siguen una Dirichlet.
- 5 ¡Es terriblemente exigente computacionalmente!

El modelo generativo que hemos planteado...

- 1 ... es conceptualmente similar al que subyace a LDA.
- 2 ¡Es mucho más liviano!

Carlos J. Gil Bellosta datanalytics

Motivación

; SVF

: NIME

Una interpretació

probabilística

NMF y LDA

¡Y eso fue todo!

¿Preguntas?