Nls

nls con odes

Más sobre secuencia de entradas acerca de ajustes no lineales. Con (casi) los mismos datos que entonces:

set.seed(155)

n <- 100

a <- 1
b <- -1/2
sigma <- 0.1

x <- runif(n, -1, 1)
y <- exp(a * x + b) + rnorm(n, 0, sigma)

dat <- data.frame(x, y)

Las y proceden de las x a través de una función no lineal exp(a * x + b). Que hoy supondremos desconocida. Supondremos únicamente que conocemos cierto mecanismo físico que determina la evolución de las y a partir de las x dado por una ecuación diferencial

Modelos directos, inversos y en los que tanto da

Continúo con esto que concluí con una discusión que me negué a resolver sobre la geometría de los errores.

Que es la manera de entender que los problemas directos e inversos no son exactamente el mismo. Digamos que no es una medida invariante frente a reflexiones del plano (que es lo que hacemos realmente al considerar el modelo inverso).

¿Pero y si medimos la distancia (ortogonal) entre los puntos $latex (x,y)$ y la curva $latex y = f(x)$ (o, equivalentemente, $latex x = f^{-1}(x)$)? Entonces daría (o debería dar) lo mismo.

Hoy, como excepción, gritaré y justificaré: ¡Malditos logaritmos!

Dados unos números positivos hay que justificar por que no tomar logaritmos y no al revés. La carga de la prueba recae sobre quien no lo hace.

No obstante:

Tenía unos datos (para cada $latex t$) que siguen (me lo juran) un modelo teórico

$$ \log y \sim k \exp(-at)$$

Existen dos opciones para encontrar los parámetros deseados $latex k$ y $latex a$. El primero, tomando logaritmos y aplicando lm. El segundo, ajustando un modelo no lineal con, p.e., nls.