Construcción de intervalos de confianza para gráficos de calibración vía "bootstrap" y algunos asuntos más
Visualizing XGBoost Models with SHAP in Python: Feature Importance, Dependence, and Interaction Plots es otro tutorial sobre todas esas cosas. Pero a los interesados en la materia, les recomiendo la lectura sosegada de Interpretable Machine Learning.
Andrew Gelman discute el problema común de que los intervalos subjetivos del 50% suelen ser demasiado estrechos y que, como consecuencia, no capturan realmente el 50% de los resultados. Como solución, propone la siguiente estrategia: construir el intervalo intuitivo y luego ampliarlo por un factor fijo (p. ej., 1.5×) para mejorar la calibración. Aunque no es, obviamente, una solución completa, ofrece un punto de partida práctico para mejorar la calibración subjetiva de la incertidumbre.